REM sleep-like atonia of hypoglossal (XII) motoneurons is caused by loss of noradrenergic and serotonergic inputs.
نویسندگان
چکیده
RATIONALE Studies of hypoglossal (XII) motoneurons that innervate the genioglossus muscle, an upper airway dilator, suggested that the suppression of upper airway motor tone during REM sleep is caused by withdrawal of excitation mediated by norepinephrine and serotonin. OBJECTIVES Our objectives were to determine whether antagonism of aminergic receptors located in the XII nucleus region can abolish the REM sleep-like atonia of XII motoneurons, and whether both serotonergic and noradrenergic antagonists are required to achieve this effect. METHODS REM sleep-like episodes were elicited in anesthetized rats by pontine carbachol injections before and at various times after microinjection of prazosin and methysergide combined, or of only one of the drugs, into the XII nucleus. MEASUREMENTS AND MAIN RESULTS Spontaneous XII nerve activity was significantly reduced, by 35 to 81%, by each antagonist alone and in combination, indicating that XII motoneurons were under both noradrenergic and serotonergic endogenous excitatory drives. During the 32 to 81 min after microinjections of both antagonists, pontine carbachol caused no depression of XII nerve activity, whereas other characteristic effects (activation of the hippocampal and cortical EEG, and slowing of the respiratory rate) remained intact. A partial recovery of the depressant effect of carbachol then occurred parallel to the recovery of spontaneous XII nerve activity from the depressant effect of the antagonists. Microinjections of either antagonist alone did not eliminate the depressant effect of carbachol. CONCLUSIONS The REM sleep-like depression of XII motoneuronal activity induced by pontine carbachol can be fully accounted for by the combined withdrawal of noradrenergic and serotonergic effects on XII motoneurons.
منابع مشابه
Medullary Control of the Upper Airway During REM Sleep
In obstructive sleep apnea patients, upper airway muscle tone is depressed during rapid eye movement (REM) sleep parallel to the characteristic postural atonia. Previous electrophysiological, pharmacological and anatomical studies provided evidence that a withdrawal of excitation mediated by norepinephrine and serotonin as well as active inhibition may contribute to the REM sleep-related depres...
متن کاملCombined antagonism of aminergic excitatory and amino acid inhibitory receptors in the XII nucleus abolishes REM sleep-like depression of hypoglossal motoneuronal activity.
It is hypothesized that the suppression of motor activity (atonia) that occurs during REM sleep is caused by the combined inhibition of motoneurons by glycine or GABA and withdrawal of excitation mediated by serotonin and norepinephrine. However, it is not known whether these mechanisms can fully account for the atonia. In urethane-anesthetized, paralyzed and artificially ventilated rats, REM s...
متن کاملRevisiting Antagonist Effects in Hypoglossal Nucleus: Brainstem Circuit for the State-Dependent Control of Hypoglossal Motoneurons: A Hypothesis
We reassessed and provided new insights into the findings that were obtained in our previous experiments that employed the injections of combined adrenergic, serotonergic, GABAergic, and glycinergic antagonists into the hypoglossal nucleus in order to pharmacologically abolish the depression of hypoglossal nerve activity that occurred during carbachol-induced rapid-eye-movement (REM) sleep-like...
متن کاملNoradrenergic modulation of hypoglossal motoneuron excitability: developmental and putative state-dependent mechanisms.
Hypoglossal (XII) motoneurons (MNs) contribute to diverse behaviors. Their innervation of the genioglossus muscle, a tongue protruder, plays a critical role in maintaining upper airway patency during breathing. Indeed, reduced activity in these motoneurons is implicated in sleep related disorders of breathing such as obstructive sleep apnea (OSA). The excitability of these MNs is modulated by m...
متن کاملSuppression of hypoglossal motoneurons during the carbachol-induced atonia of REM sleep is not caused by fast synaptic inhibition.
The depression of upper airway motor activity that develops during the rapid eye movement (REM) stage of sleep is a major factor allowing upper airway obstructions to occur in patients with sleep apnea syndrome. Microinjections of carbachol, a cholinergic agonist, into the dorsal pontine tegmentum of chronically instrumented cats produce REM sleep. In acutely decerebrate cats, carbachol induces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 172 10 شماره
صفحات -
تاریخ انتشار 2005